f16 — NAG Interface to BLAS flé6zjc

1

NAG C Library Function Document

nag ztrsm (f16zjc)

Purpose

nag_ztrsm (f16zjc) solves one of the matrix equations

TX =aB, T'X=aB, TH'X=aB, XT=aB, XT'=aB or XT" =aB,

where X and B are m by n complex matrices and 7" is a complex triangular matrix.

2

Specification

void nag_ztrsm (Nag_OrderType order, Nag_SideType side, Nag_UploType uplo,

3

Nag_TransType transt, Nag_DiagType diag, Integer m, Integer n, Complex alpha,
const Complex t[], Integer pdt, Complex b[], Integer pdb, NagError x*fail)

Description

nag_ztrsm (f16zjc) performs one of the matrix-matrix operations

B—aT 'B, B— ol !B, B— aT B,
B—aBT', B—aBT'?! or B—aBT ¥,

where 7 is a complex triangular matrix, B is an m by n complex matrix, and « is a complex scalar. 77

denotes (T7)"" or equivalently (T~')"; T denotes (T7)~" or equivalently (7~

4

I)H‘

References

The BLAS Technical Forum Standard (2001) www.netlib.org/blas/blast-forum

5
1:

Parameters

order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_ RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

side — Nag_SideType Input
On entry: specifies whether B is operated on from the left or the right, as follows:

if side = Nag LeftSide, B is pre-multiplied from the left;

if side = Nag_RightSide, B is post-multiplied from the right.
Constraint: side = Nag_LeftSide or Nag_RightSide.

uplo — Nag_ UploType Input
On entry: specifies whether T' is upper or lower triangular as follows:

if uplo = Nag_Upper, 7' is upper triangular;

if uplo = Nag Lower, T is lower triangular.

Constraint: uplo = Nag_Upper or Nag_Lower.

[NP3645/7] fl6zjc.1

flé6zjc NAG C Library Manual

4: transt — Nag TransType Input
On entry: specifies the operation to be performed as follows:
if side = Nag_LeftSide and transt = Nag_Trans, B «— oT !B,
if side = Nag_LeftSide and transt = Nag_NoTrans, b — oT 'B;
if side = Nag_LeftSide and transt = Nag_ConjTrans, B — o1 " B;
if side = Nag_RightSide and transt = Nag_Trans, B — aBT ';
if side = Nag_RightSide and transt = Nag NoTrans, B «— aBT .
if side = Nag_RightSide and transt = Nag_ConjTrans, B — aBT .
Constraint: side = Nag_LeftSide or Nag_RightSide; transt = Nag_NoTrans or Nag_Trans.

5: diag — Nag DiagType Input
On entry: specifies whether A has non-unit or unit diagonal elements, as follows:
if diag = Nag_NonUnitDiag, the diagonal elements are stored explicitly;
if diag = Nag_UnitDiag, the diagonal elements are assumed to be 1, and are not referenced.

Constraint. diag = Nag_NonUnitDiag or Nag_UnitDiag.

6: m — Integer Input
On entry: m, the number of rows of the matrix B; the order of T if side = Nag_LeftSide.

Constraint: m > 0.

7: n — Integer Input
On entry: n, the number of columns of the matrix B; the order of 7' if side = Nag_RightSide.

Constraint: n > 0.

8: alpha — Complex Input

On entry: the scalar o

9: t{dim] — const Complex Input

Note: the dimension, dim, of the array t must be at least max(1,pdt x m) when
side = Nag_LeftSide and at least max (1, pdt x n) when side = Nag_RightSide.

If order = Nag_ColMajor, the (7, j)th element of the matrix 7" is stored in t[(j — 1) x pdt+ ¢ — 1] and
if order = Nag_RowMajor, the (i,j)th element of the matrix T is stored in t[(i — 1) x pdt + j — 1].

On entry: the m by m triangular matrix 7T if side = Nag_LeftSide or n by n triangular matrix 7" if
side = Nag_RightSide. If uplo = Nag Upper, T is upper triangular and the elements of the array
below the diagonal are not referenced; if uplo = Nag_Lower, T is lower triangular and the elements
of the array above the diagonal are not referenced. If diag = Nag_UnitDiag, the diagonal elements
of T' are not referenced, but are assumed to be 1.

10: pdt — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix 7' in the array t.

Constraints:

if side = Nag_LeftSide, pdt > max(1, m);
if side = Nag_RightSide, pdt > max(1,n).

fl6zjc.2 [NP3645/7]

116 —

11:

NAG Interface to BLAS flé6zjc

b[dim] — Complex Input/Output

Note: the dimension, dim, of the array b must be at least max(l,pdb x n) when
order = Nag_ColMajor and at least max(1, pdb x m) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (i, j)th element of the matrix B is stored in b[(j — 1) x pdb + ¢ — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix B is stored in b[(¢ — 1) x pdb + j — 1].

On entry: the m by n matrix B. If alpha =0, b need not be set.
On exit: the updated matrix B.

12: pdb — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array b.
Constraints:
if order = Nag_ColMajor, pdb > max(1, m);
if order = Nag_RowMajor, pdb > max(1,n).
13: fail — NagError * Input/Output
The NAG error parameter (see the Essential Introduction).
6 Error Indicators and Warnings
NE_INT

On entry, m = (value).
Constraint: m > 0.

On entry, n = (value).
Constraint: n > 0.

On entry, pdt = (value).
Constraint: pdt > max(1,n).

On entry, pdb = (value).
Constraint: pdb > max(1, m).

On entry, pdb = (value).
Constraint: pdb > max(1,n).

NE_BAD PARAM

7

On entry, parameter (value) had an illegal value.

Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see
section 2.7 of The BLAS Technical Forum Standard (2001)).

8

Further Comments

No test for singularity or near-singularity of 7" is included in this routine. Such tests must be performed
before calling this routine.

9

None.

Example

[NP3645/7] fl6zjc.3 (last)

	f16zjc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	side
	uplo
	transt
	diag
	m
	n
	alpha
	t
	pdt
	b
	pdb
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_BAD_PARAM

	7 Accuracy
	8 Further Comments
	9 Example

	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities

