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NAG C Library Function Document

nag ztrsm (f16zjc)

Purpose

nag_ztrsm (f16zjc) solves one of the matrix equations

TX =aB, T'X=aB, TH'X=aB, XT=aB, XT'=aB or XT" =aB,

where X and B are m by n complex matrices and 7" is a complex triangular matrix.
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Specification

void nag_ztrsm (Nag_OrderType order, Nag_SideType side, Nag_UploType uplo,
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Nag_TransType transt, Nag_DiagType diag, Integer m, Integer n, Complex alpha,
const Complex t[], Integer pdt, Complex b[], Integer pdb, NagError x*fail)

Description

nag_ztrsm (f16zjc) performs one of the matrix-matrix operations

B—aT 'B, B— ol !B, B— aT B,
B—aBT', B—aBT'?! or B—aBT ¥,

where 7 is a complex triangular matrix, B is an m by n complex matrix, and « is a complex scalar. 77

denotes (T7)"" or equivalently (T~')"; T denotes (T7)~" or equivalently (7~
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References

The BLAS Technical Forum Standard (2001) www.netlib.org/blas/blast-forum
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Parameters

order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_ RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

side — Nag_SideType Input
On entry: specifies whether B is operated on from the left or the right, as follows:

if side = Nag LeftSide, B is pre-multiplied from the left;

if side = Nag_RightSide, B is post-multiplied from the right.
Constraint: side = Nag_LeftSide or Nag_RightSide.

uplo — Nag_ UploType Input
On entry: specifies whether T' is upper or lower triangular as follows:

if uplo = Nag_Upper, 7' is upper triangular;

if uplo = Nag Lower, T is lower triangular.

Constraint: uplo = Nag_Upper or Nag_Lower.
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4: transt — Nag TransType Input
On entry: specifies the operation to be performed as follows:
if side = Nag_LeftSide and transt = Nag_Trans, B «— oT !B,
if side = Nag_LeftSide and transt = Nag_NoTrans, b — oT 'B;
if side = Nag_LeftSide and transt = Nag_ConjTrans, B — o1 " B;
if side = Nag_RightSide and transt = Nag_Trans, B — aBT ';
if side = Nag_RightSide and transt = Nag NoTrans, B «— aBT .
if side = Nag_RightSide and transt = Nag_ConjTrans, B — aBT .
Constraint: side = Nag_LeftSide or Nag_RightSide; transt = Nag_NoTrans or Nag_Trans.

5: diag — Nag DiagType Input
On entry: specifies whether A has non-unit or unit diagonal elements, as follows:
if diag = Nag_NonUnitDiag, the diagonal elements are stored explicitly;
if diag = Nag_UnitDiag, the diagonal elements are assumed to be 1, and are not referenced.

Constraint. diag = Nag_NonUnitDiag or Nag_UnitDiag.

6: m — Integer Input
On entry: m, the number of rows of the matrix B; the order of T if side = Nag_LeftSide.

Constraint: m > 0.

7: n — Integer Input
On entry: n, the number of columns of the matrix B; the order of 7' if side = Nag_RightSide.

Constraint: n > 0.

8: alpha — Complex Input

On entry: the scalar o

9: t{dim] — const Complex Input

Note: the dimension, dim, of the array t must be at least max(1,pdt x m) when
side = Nag_LeftSide and at least max (1, pdt x n) when side = Nag_RightSide.

If order = Nag_ColMajor, the (7, j)th element of the matrix 7" is stored in t[(j — 1) x pdt+ ¢ — 1] and
if order = Nag_RowMajor, the (i,j)th element of the matrix T is stored in t[(i — 1) x pdt + j — 1].

On entry: the m by m triangular matrix 7T if side = Nag_LeftSide or n by n triangular matrix 7" if
side = Nag_RightSide. If uplo = Nag Upper, T is upper triangular and the elements of the array
below the diagonal are not referenced; if uplo = Nag_Lower, T is lower triangular and the elements
of the array above the diagonal are not referenced. If diag = Nag_UnitDiag, the diagonal elements
of T' are not referenced, but are assumed to be 1.

10:  pdt — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix 7' in the array t.

Constraints:

if side = Nag_LeftSide, pdt > max(1, m);
if side = Nag_RightSide, pdt > max(1,n).
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b[dim] — Complex Input/Output

Note: the dimension, dim, of the array b must be at least max(l,pdb x n) when
order = Nag_ColMajor and at least max(1, pdb x m) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (i, j)th element of the matrix B is stored in b[(j — 1) x pdb + ¢ — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix B is stored in b[(¢ — 1) x pdb + j — 1].

On entry: the m by n matrix B. If alpha =0, b need not be set.
On exit: the updated matrix B.

12: pdb — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array b.
Constraints:
if order = Nag_ColMajor, pdb > max(1, m);
if order = Nag_RowMajor, pdb > max(1,n).
13:  fail — NagError * Input/Output
The NAG error parameter (see the Essential Introduction).
6  Error Indicators and Warnings
NE_INT

On entry, m = (value).
Constraint: m > 0.

On entry, n = (value).
Constraint: n > 0.

On entry, pdt = (value).
Constraint: pdt > max(1,n).

On entry, pdb = (value).
Constraint: pdb > max(1, m).

On entry, pdb = (value).
Constraint: pdb > max(1,n).

NE_BAD PARAM

7

On entry, parameter (value) had an illegal value.

Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see
section 2.7 of The BLAS Technical Forum Standard (2001)).
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Further Comments

No test for singularity or near-singularity of 7" is included in this routine. Such tests must be performed
before calling this routine.

9

None.

Example
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