NAG C Library Function Document nag ztrsm (f16zjc)

1 Purpose

nag ztrsm (f16zjc) solves one of the matrix equations

$$TX = \alpha B$$
, $T^TX = \alpha B$, $T^HX = \alpha B$, $XT = \alpha B$, $XT^T = \alpha B$ or $XT^H = \alpha B$,

where X and B are m by n complex matrices and T is a complex triangular matrix.

2 Specification

3 Description

nag ztrsm (f16zjc) performs one of the matrix-matrix operations

$$B \leftarrow \alpha T^{-1}B, \quad B \leftarrow \alpha T^{-T}B, \quad B \leftarrow \alpha T^{-H}B, B \leftarrow \alpha B T^{-1}, \quad B \leftarrow \alpha B T^{-T} \quad \text{or} \quad B \leftarrow \alpha B T^{-H},$$

where T is a complex triangular matrix, B is an m by n complex matrix, and α is a complex scalar. T^{-T} denotes $(T^T)^{-1}$ or equivalently $(T^{-1})^T$; T^{-H} denotes $(T^H)^{-1}$ or equivalently $(T^{-1})^H$.

4 References

The BLAS Technical Forum Standard (2001) www.netlib.org/blas/blast-forum

5 Parameters

1: **order** – Nag OrderType

Input

On entry: the **order** parameter specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by **order** = **Nag_RowMajor**. See Section 2.2.1.4 of the Essential Introduction for a more detailed explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: **side** – Nag SideType

Input

On entry: specifies whether B is operated on from the left or the right, as follows:

if $side = Nag_LeftSide$, B is pre-multiplied from the left;

if $side = Nag_RightSide$, B is post-multiplied from the right.

Constraint: side = Nag_LeftSide or Nag_RightSide.

3: **uplo** – Nag UploType

Input

On entry: specifies whether T is upper or lower triangular as follows:

if $uplo = Nag_Upper$, T is upper triangular;

if $uplo = Nag_Lower$, T is lower triangular.

Constraint: uplo = Nag_Upper or Nag_Lower.

[NP3645/7] f16zjc.1

4: **transt** – Nag TransType

Input

On entry: specifies the operation to be performed as follows:

if side = Nag_LeftSide and transt = Nag_Trans, $B \leftarrow \alpha T^{-T}B$;

if side = Nag_LeftSide and transt = Nag_NoTrans, $b \leftarrow \alpha T^{-1}B$;

if side = Nag_LeftSide and transt = Nag_ConjTrans, $B \leftarrow \alpha T^{-H}B$;

if side = Nag_RightSide and transt = Nag_Trans, $B \leftarrow \alpha BT^{-T}$;

if side = Nag_RightSide and transt = Nag_NoTrans, $B \leftarrow \alpha BT^{-1}$.

if side = Nag_RightSide and transt = Nag_ConjTrans, $B \leftarrow \alpha BT^{-H}$.

 $\textit{Constraint}: \ \textbf{side} = \textbf{Nag_LeftSide} \ \ \textbf{or} \ \ \textbf{Nag_RightSide}; \ \ \textbf{transt} = \textbf{Nag_NoTrans} \ \ \textbf{or} \ \ \textbf{Nag_Trans}.$

5: **diag** – Nag_DiagType

Input

On entry: specifies whether A has non-unit or unit diagonal elements, as follows:

if **diag** = **Nag_NonUnitDiag**, the diagonal elements are stored explicitly;

if diag = Nag_UnitDiag, the diagonal elements are assumed to be 1, and are not referenced.

Constraint: diag = Nag_NonUnitDiag or Nag_UnitDiag.

6: \mathbf{m} - Integer Input

On entry: m, the number of rows of the matrix B; the order of T if side = Nag_LeftSide.

Constraint: $\mathbf{m} \geq 0$.

7: \mathbf{n} - Integer Input

On entry: n, the number of columns of the matrix B; the order of T if $side = Nag_RightSide$.

Constraint: $\mathbf{n} \geq 0$.

8: **alpha** – Complex

Input

On entry: the scalar α .

9: $\mathbf{t}[dim]$ – const Complex

Input

Note: the dimension, dim, of the array \mathbf{t} must be at least $\max(1, \mathbf{pdt} \times \mathbf{m})$ when $\mathbf{side} = \mathbf{Nag_RightSide}$ and at least $\max(1, \mathbf{pdt} \times \mathbf{n})$ when $\mathbf{side} = \mathbf{Nag_RightSide}$.

If **order** = **Nag_ColMajor**, the (i, j)th element of the matrix T is stored in $\mathbf{t}[(j-1) \times \mathbf{pdt} + i - 1]$ and if **order** = **Nag_RowMajor**, the (i, j)th element of the matrix T is stored in $\mathbf{t}[(i-1) \times \mathbf{pdt} + j - 1]$.

On entry: the m by m triangular matrix T if $\mathbf{side} = \mathbf{Nag_LeftSide}$ or n by n triangular matrix T if $\mathbf{side} = \mathbf{Nag_RightSide}$. If $\mathbf{uplo} = \mathbf{Nag_Upper}$, T is upper triangular and the elements of the array below the diagonal are not referenced; if $\mathbf{uplo} = \mathbf{Nag_Lower}$, T is lower triangular and the elements of the array above the diagonal are not referenced. If $\mathbf{diag} = \mathbf{Nag_UnitDiag}$, the diagonal elements of T are not referenced, but are assumed to be 1.

10: **pdt** – Integer Input

On entry: the stride separating row or column elements (depending on the value of **order**) of the matrix T in the array \mathbf{t} .

Constraints:

```
if side = Nag_LeftSide, pdt \geq \max(1, \mathbf{m}); if side = Nag_RightSide, pdt \geq \max(1, \mathbf{n}).
```

f16zjc.2 [NP3645/7]

11: $\mathbf{b}[dim]$ – Complex

Input/Output

Note: the dimension, dim, of the array **b** must be at least $max(1, pdb \times n)$ when **order** = $Nag_ColMajor$ and at least $max(1, pdb \times m)$ when **order** = $Nag_RowMajor$.

If order = Nag_ColMajor, the (i, j)th element of the matrix B is stored in $\mathbf{b}[(j-1) \times \mathbf{pdb} + i - 1]$ and if order = Nag_RowMajor, the (i, j)th element of the matrix B is stored in $\mathbf{b}[(i-1) \times \mathbf{pdb} + j - 1]$.

On entry: the m by n matrix B. If $\mathbf{alpha} = 0$, \mathbf{b} need not be set.

On exit: the updated matrix B.

12: **pdb** – Integer

Input

On entry: the stride separating matrix row or column elements (depending on the value of **order**) in the array **b**.

Constraints:

```
if order = Nag_ColMajor, pdb \geq \max(1, \mathbf{m}); if order = Nag_RowMajor, pdb \geq \max(1, \mathbf{n}).
```

13: **fail** – NagError *

Input/Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE INT

```
On entry, \mathbf{m} = \langle value \rangle.

Constraint: \mathbf{m} \geq 0.

On entry, \mathbf{n} = \langle value \rangle.

Constraint: \mathbf{n} \geq 0.

On entry, \mathbf{pdt} = \langle value \rangle.

Constraint: \mathbf{pdt} \geq \max(1, \mathbf{n}).

On entry, \mathbf{pdb} = \langle value \rangle.

Constraint: \mathbf{pdb} \geq \max(1, \mathbf{m}).

On entry, \mathbf{pdb} = \langle value \rangle.

Constraint: \mathbf{pdb} \geq \max(1, \mathbf{m}).
```

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

7 Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see section 2.7 of The BLAS Technical Forum Standard (2001)).

8 Further Comments

No test for singularity or near-singularity of T is included in this routine. Such tests must be performed before calling this routine.

9 Example

None.

[NP3645/7] f16zjc.3 (last)